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Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease caused by

expansion of a CTGmicrosatellite in the 3’ untranslated region of the DMPK gene. Despite

characteristic muscular, cardiac, and neuropsychological symptoms, CTG trinucleotide

repeats are unstable both in the somatic and germinal lines, making the age of onset, clini-

cal presentation, and disease severity very variable. A molecular biomarker to stratify

patients and to follow disease progression is, thus, an unmet medical need. Looking for a

novel biomarker, and given that specific miRNAs have been found to be misregulated in

DM1 heart and muscle tissues, we profiled the expression of 175 known serum miRNAs in

DM1 samples. The differences detected between patients and controls were less than 2.6

fold for all of them and a selection of six candidate miRNAs,miR-103,miR-107,miR-21,
miR-29a,miR-30c, andmiR-652 all failed to show consistent differences in serum expres-

sion in subsequent validation experiments.

Introduction
Myotonic dystrophy type 1 (DM1) can appear at any time in life and is regarded as the human
disease which probably has the most variable clinical presentation, somehow affecting virtually
all body systems [1]. Although typically classified as a neuromuscular disease, besides its prom-
inent muscular system defects (including cardiac, smooth, and skeletal muscle cell types), it
also compromises cognitive, ocular, digestive, endocrine, respiratory, reproductive, cutaneous,
haematopoietic, and immune systems to varying degrees [2]. Characteristic muscular symp-
toms include cardiac problems such as malignant arrhythmias and conduction defects, and
involvement of facial (ptosis), bulbar (dysarthria, dysphagia), limb (steppage, gait troubles),
and smooth (constipation) muscle with associated muscular atrophy and myotonia [1, 3, 4].
Patients also suffer from iridescent cataracts and insulin resistance with metabolic syndrome.
Genetically, it is an autosomal dominant disease caused by unstable expansion of the CTG
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microsatellite in the 3’ untranslated region of the dystrophia myotonica-protein kinase (DMPK)
gene and is a rare disease that afflicts one in 8000 people worldwide. Unaffected individuals
carry between 5 and 37 CTG repeats whereas DM1 patients carry between 50 and thousands of
CTG triplets [5]. Importantly, CTG trinucleotide expansions are unstable both in the somatic
and germinal lines, likely contributing to the heterogeneity in clinical symptoms and age of
onset, which inversely correlates with the size of the triplet expansion. A further increase in the
size of the CTG microsatellite occurs in most intergenerational transmissions of the expanded
allele, which correlates with genetic anticipation [6]. Despite the correlation between the size of
the CTG expansions in blood cells with disease severity and age of onset, its predictive power is
poor and it is not a good parameter for characterising the disease load. Forthcoming therapeu-
tic trials urgently need good biomarkers to evaluate the therapeutic response to treatments.
Alternative splicing changes in skeletal muscle have been described as potential biomarkers of
disease severity and therapeutic response, but they involve invasive techniques [7] and it would
be difficult to routinely measure them in other sites (such as cardiac or cerebral tissues) which
are strongly involved in DM1 pathophysiology.

Expanded RNA transcripts containing CUG repeats are retained in the cell nucleus as insol-
uble RNA aggregates known as ribonuclear foci [8]. These foci are able to sequester different
RNA binding proteins that are prevented from performing their normal functions. The alter-
native splicing regulators Muscleblind-like1 (MBNL1) is among the recruited proteins, which
result in its functional depletion [9]. CUGBP, Elav-like family member 1 (CELF1), a splicing
factor antagonist of MBNL1 [10], is not sequestered in ribonuclear foci but becomes abnor-
mally activated due to hyperphosphorylation [11]. As a consequence, several alternative splic-
ing events are misregulated in DM1 and in some cases these splicing defects contribute to DM1
symptoms such as myotonia, insulin resistance, or muscle weakness [7, 12, 13, 14]. The molec-
ular mechanism leading to DM1 pathogenesis is complex and, in addition to splicing defects,
also includes mispolyadenylation of pre-mRNA, a process that is also regulated by MBNL pro-
teins [15], repeat-associated non-ATG translation (RAN translation) [16], bidirectional tran-
scription [17], defects in transcription and translation [18, 19], epigenetic changes [20], and
the silencing of cardiac and muscle transcripts by changes in miRNA expression levels [21, 22,
23, 24]. miRNAs are endogenous non-coding RNAs, approximately 21 nucleotides long, that
function as post-transcriptional gene expression regulators by targeting the 3’ untranslated
region of their complementary target mRNA. miRNAs regulate RNA stability and translation
rates via degradation or inhibition of protein translation, respectively (reviewed in [25]). Over
2000 miRNAs have been identified in the human genome [26] and have been implicated in
numerous biological processes including development, proliferation, differentiation, and stress
responses (reviewed in [27]). Because miRNAs can be readily detected in body fluids, and par-
ticularly in blood components [28], differences in serum miRNAs have been proposed as
potential non-invasive biomarkers of disease progression for several conditions such as cancer,
Alzheimer´s disease, hepatitis B infection, retinopathies, gestational diabetes mellitus, or
Duchenne muscular dystrophy [29, 30, 31, 32, 33, 34].

Because several miRNAs have been detected to be altered in DM1 cardiac and muscle tissues
[21, 22, 23, 24, 35], and there are numerous drugs that work in DM1 animal models pending
accurate pharmacological development and clinical testing in humans [36, 37, 38, 39], we
explored the possibility that misexpression of specific serum miRNAs could be identified as
non-invasive DM1 biomarkers. To this end, we profiled 175 miRNAs in the peripheral blood
serum of DM1-affected individuals and healthy controls by real time qPCR. Even though none
of them showed expression differences greater than 2.6 fold, the six miRNAs with the highest
fold-change score (miR-103,miR-107,miR-21,miR-29a,miR-30c, andmiR-652) were further
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investigated but no significant differences between the control and DM1 conditions were
found for any of them.

Materials and Methods

Sample collection and serum isolation
This study was approved by the Ethics Committee at the University of Valencia. All blood sam-
ples were taken after specific written informed consent to participate in the present study. All
individuals were Subjects with DM1 were ambulatory adults with proven CTG expansions.
Peripheral blood samples were obtained by venous punctures with a fine bore needle (21 G ¾”)
of 26 DM1 and 22 healthy individuals (Tables 1 and 2) and placed in serum collection tubes
(BD VACUTAINER SST II ADVANCE). After 10 min centrifugation at 1200 g at room tem-
perature, the serum was aliquoted and kept at -80°C until use. For CTG repeat size determina-
tion, genomic DNA was isolated from peripheral blood leucocytes [40] and was processed for
Southern blotting with a 32P-labelled cDNA25 probe (S1 Fig) or, alternatively, the CTG-repeat
region was amplified by PCR using DM101 and DM102 as primers [41, 42, 43, 44].

RNA extraction and cDNA synthesis
We assayed for the presence of oxyhaemoglobin in the serum samples because haemolysis has
been described to affect the levels of certain miRNAs [45]. The absorbance at 414 nm was
determined spectrophotometrically and samples with an absorbance higher than 0.2 were dis-
carded, as this is the cutoff at which samples have previously been considered to be haemolysed
[45]. Independent total RNA extraction was performed for each serum sample using the miR-
Neasy Mini kit (Qiagen). Briefly, 500 μL of serum was thawed on ice, centrifuged for 5 min at
3000 g at 4°C and 200 μL of the supernatant serum was taken and mixed with 750 μL QIAzol
containing 1.25 mg/mL bacteriophage MS2 RNA as a carrier. The extraction was performed
according to the manufacturer’s instructions, except that the final wash (with RPE buffer) was
performed three times instead of once. Total RNA was eluted with 50 μL water, and cDNA syn-
thesis was performed with 4 μL of total RNA using the Universal cDNA synthesis II kit
(Exiqon).

MicroRNA expression profiling and validation
The miRCURY LNA™ Universal RT microRNA PCR assay and the Serum/Plasma Focus
microRNA PCR Panel (Exiqon) was used for miRNA expression profiling. These panels

Table 1. Information about the samples used in the miRNA profiling.

sample sex age (CTG)n Sample sex age (CTG)n

P_1 male 48 667 C_11 male 40 -

P_2 male 41 500 C_12 male 53 -

P_3 male 53 800 C_13 male 44 -

P_4 male 50 333 C_14 male 54 -

P_5 male 54 333 C_15 male 45 -

P_6 male 56 333 C_16 male 42 -

P_7 male 48 333 C_17 male 43 -

P_8 male 57 1333 C_18 male 53 -

P_9 male 56 1000 C_19 male 41 -

P_10 male 50 333 C_20 male 46 -

doi:10.1371/journal.pone.0150501.t001
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contain primers for the detection of the 175 most-expressed miRNAs in human serum (S1
Table). Each 384-well plate contained 2 complete panels of primers and 2 negative controls;
real-time PCR was performed according to the manufacturer’s instructions, and cDNAs from a
DM1 patient and a control sample were amplified in parallel in each plate. Expression values
were calculated using the 2-ΔΔCt method [46] using the mean Ct of miRNAs detected (Ct< 34)
for normalisation (S1 Table). During the validation step, the analysis of expression of these
miRNAs used real-time PCRs with specific miRCURY LNAmicroRNA PCR primers (Exiqon).
The GeNorm and Normfinder algorithms were used to find optimal reference genes to normal-
ise the expression of the miRNAs being validated [47, 48]. Expression level determinations
were performed using an Applied Biosystems 7900HT Fast Real-Time PCR System.

Statistical analysis
A logarithmic transformation (log2) was used to normalise the expression data in the profiling
experiment. Expression differences were analysed using the Student t-test and different meth-
ods for multiple-testing correction were applied, including Bonferroni, Benjamini-Hochberg
(False Discovery Rate), Westfall-Young, and Benjamini-Yekutieli corrections. Cluster software
was used for hierarchical clustering analysis of genes and samples. Euclidean distances and the
average linkage method were selected, using the normalised expression values of each miRNA
to represent clusters.

Table 2. Information about the samples used in qPCR.

sample sex age (CTG)n sample sex age (CTG)n

P_1 male 48 667 C_11 male 40 -

P_2 male 41 500 C_12 male 53 -

P_4 male 50 333 C_13 male 44 -

P_5 male 54 333 C_14 male 54 -

P_6 male 56 333 C_15 male 45 -

P_7 male 48 333 C_16 male 42 -

P_8 male 57 1333 C_17 male 43 -

P_9 male 56 1000 C_19 male 41 -

P_10 male 50 333 C_20 male 46 -

21 male 56 70 50 male 45 –

22 female 61 333 51 male 58 –

23 female 44 1000 52 male 49 –

24 female 53 730 53 male 52 –

25 female 41 500 54 female 59 –

26 female 42 833 55 female 59 –

28 female 46 667 57 female 57 –

30 female 45 667 58 female 65 –

32 female 48 1333 60 female 61 –

33 male 26 1000 61 female 55 –

34 male 38 1333 62 female 51 –

35 male 37 1000 64 male 34 –

36 male 39 1333 65 female 25 –

37 male 31 333

38 male 36 400

39 male 30 333

40 male 37 333

doi:10.1371/journal.pone.0150501.t002
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Results

MicroRNA expression profiling in human myotonic dystrophy type 1
serum
A total of 175 miRNA expression levels were obtained from each peripheral blood serum total-
RNA sample using commercial microRNA PCR panels (Exiqon; S1 Table). miRNA profiling
was initially carried out with peripheral blood from 10 male DM1-affected individuals (aged
51.3 ± 1.6; P01-P10), expressing between 333 and 1333 CTG repeats (in blood samples), and 10
sex and age-matched controls (aged 46.1 ± 1.7; C11-C20) that did not display any neuromuscu-
lar disorders (Table 1). The absorbance at 414 nm was measured in all the samples to discard
the possibility of haemolysis, which can occur during blood collection and has a potentially
substantial impact on serum miRNA content [49] (S2 Table). Because two samples, P3 and
C18, generated a positive result for this parameter (absorbance> 0.2) they were discarded dur-
ing data analysis (S3 Table). Expression data from each sample was initially normalised to the
mean values of all 175 miRNAs. Statistical analysis of the results (Student t-test) showed 35
miRNAs with a P-value lower than 0.05, of which 24 miRNAs were up- and 11 were downregu-
lated when compared to controls (Fig 1A, S3 Table). However, only miR-21 was significantly
downregulated in DM1 according to three different statistical corrections (Bonferroni, Benja-
mini-Hochberg (False Discovery Rate) and Westfall-Young, S3 Table). It is worth mentioning
that all the differences in expression levels detected between controls and DM1 patients were
relatively low (below 2.6-fold) compared to other described biomarkers [50, 51, 52]. Given the
controversy regarding the most appropriate way to normalise data when determining miRNA
expression values, in addition to mean normalisation, we also normalised the data to specific
miRNA expression levels [53]. For that purpose we used two different algorithms, NormFinder
and geNorm [47, 48], to identify the most stable miRNAs from our study cohort (S4 Table).
Therefore we normalised themiR-15a,miR-23a,miR-28-3p, andmiR-484 expression levels to
the mean ofmiR-15a,miR-23a, andmiR-484 and the mean ofmiR-15a andmiR-28-3p (S3
Table). In most cases,miR-21 was the only miRNA with significantly different expression
between the controls and patients.

We carried out additional statistical analyses using G�Power software to select additional
candidate miRNAs to validate by qPCR. We chose miRNAs with the highest fold-change and
with a Power value*1, which includedmiR-21. Considering these parameters, we selected the
six most promising miRNAs for validation:miR-103,miR-107,miR-21,miR-29a,miR-30c, and
miR-652 (Fig 1B and 1C).

Expression quantification of six candidate miRNAs in serum
We experimentally determined individual expression levels ofmiR-103,miR-107,miR-21,
miR-29a,miR-30c, andmiR-652 in the same nine DM1 and nine control serum samples used
during the initial profiling. The data were normalised tomiR-15a, the most and second-most
stable miRNA from all of the samples, according to geNorm and NormFinder, respectively
(Fig 2A and 2B; S4 Table). However, we did not detect statistically-significant differences
between DM1 and control samples, not even formiR-21, the only miRNA that was positive
after the profiling (Fig 2C).

Considering that from among all of our results, data supportingmiR-21misexpression was
the strongest, we decided to carry out further analyses on it. To prevent potential false-negative
results because of the miRNA selected as a normaliser, we normalisedmiR-21 to the expression
of the miRNA with the strongest alteration in the opposite direction because this ratio would
be independent of any endogenous control. Taking into account data from the profiling
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(S1 Table),miR-21 expression was downregulated 2.4 times in DM1 samples whilemiR-130a
was upregulated, with a 2.5-fold change (Fig 3A). Next, we used serum samples from 21 DM1
male and female individuals and 17 counterpart controls to quantify expression levels ofmiR-
21 andmiR-130a. We confirmed the absence of haemolysis in all the samples by measuring
absorbance at 414 nm (S2 Table). However, again, we were unable to detect any significant dif-
ference in themiR-21 tomiR-130a ratio between controls and DM1 samples (Fig 3B).

Discussion
The only method available for monitoring the progression of DM1 is clinical assessment pro-
vided by semiquantitative scales, which correlates poorly with underlying biological defects
[54]. A more targeted strategy which characterises muscle involvement is the transcriptomic
analysis of muscle biopsies via invasive techniques. These analyses have led to the recent pro-
posal that suggests that alternative splicing events in skeletal muscle can serve as valid biomark-
ers for quantifying the severity of DM1 and its likely response to therapy [14]. Nevertheless,
the different patterns of muscle involvement in DM1, and the invasive nature of the approach,
inherently limits this proposal as a good measurement of outcome. An alternative method for
neuromuscular diseases is to use blood miRNAs as biomarkers. Cacchiarelli et al. described
three miRNAs that correlated with disease severity in Duchenne muscular dystrophy where, as
a consequence of muscle-fibre damage, muscle miRNAs are released into the bloodstream [34].
However, cell membranes remain undamaged in DM1 muscle fibres [55] and, consequently,

Fig 1. Profiling of miRNA expression levels in myotonic dystrophy type 1 patients and controls. (A) Heat map graphical representation and clustering
analysis of miRNA expression from 9 DM1 patients (P01-P10, excluding P03) and 9 healthy controls (C11-C20 excluding C18). Blue and yellow indicate
statistically significant down- and upregulated miRNAs compared to controls, respectively (t-test α = 0.05). Data is presented as a dendrogram, with the
closest branches of the tree showing samples with less dissimilar expression patterns. (B) Statistical analysis of the miRNA profiling carried out with the
G*Power tool. These miRNAs have the highest fold-change and Power*1 statistics in the sample pool. (C) Graphical representation of the expression
levels of the miRNAs selected via G*Power analysis. OnlymiR-21 showed a statistically-significant difference when Bonferroni correction was applied.
Graph bars represent average fold changes and their standard errors. P > 0.05.

doi:10.1371/journal.pone.0150501.g001
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levels of myomiRs in blood in these patients are not expected to be as dramatically increased as
a result of the disease as in Duchenne muscular dystrophy.

In the present work we profiled 175 miRNAs in serum samples but we did not observe dif-
ferences greater than 2.6-fold between DM1 patients and healthy individuals. Owing to the
novelty in the use of miRNAs as biomarkers, there is a lack of consensus regarding different
technical aspects such as sample quality [56]. However, it was demonstrated that haemolysis
can occur during blood collection and this can have a substantial effect on miRNA content in
plasma or serum [49]. This fact shows the relevance of good sample quality control for the
results obtained when searching for miRNA biomarkers. Initially, we performed the profiling
with ten control and ten DM1 patient samples, however one sample from each group was
removed because of unacceptable haemolysis levels. After the profiling we identified 35 altered
candidate-miRNAs. However, after applying Bonferroni correction only one,miR-21, was sta-
tistically different.

Fig 2. Validation by q-PCR did not reveal differences in miRNA expression levels between controls
andmyotonic dystrophy type 1 patients. (A, B) Graphical representation of the results generated by two
algorithms, geNorm and NormFinder, to identify the optimal normalisation miRNA from among all of the
candidates (S4 Table). (C) Analysis of the relative expression levels ofmiR-103,miR-107,miR-21,miR-29a,
miR-30c, andmiR-652 by quantitative PCR on the serum samples of nine DM1 patients and nine healthy
individuals. All data were normalised tomiR-15 expression levels but no significant differences were
observed between either group. Graph bars represent average fold-changes of miRNA expression on a
logarithmic scale, calculated using the 2-ΔΔCt method, as well as their confidence intervals. Graph bars
represent average fold changes of miRNA expression, calculated using the 2-ΔΔCt method, along with their
standard error.

doi:10.1371/journal.pone.0150501.g002
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It was recently published that four muscle-specific miRNAs,miR-1,miR-133a,miR-133b,
andmiR-206, were altered in serum from DM1 patients [57]. Of these,miR-1,miR-133a, and
miR-133b were included in our profiling panel, however, we did not detect differences in their
expression levels. There are two aspects that should be considered: Firstly, that in this afore-
mentioned work the data were normalised tomiR-16 expression, however other work has
shown that levels of this miRNA vary as a function of haemolysis levels because it is one of the
most abundant miRNAs in red blood cells [45, 49, 58], and thusmiR-16 levels may be unac-
ceptably influenced by haemolysis. Moreover, it was recently observed thatmiR-16 is seques-
tered by long CUG repeats [59] and consequently the amount of freemiR-16 in the
bloodstream may not be equal in healthy and DM1-affected individuals. Secondly, different
methods may identify different sets of altered miRNAs. Indeed, a recent review showed that
plasma and serum miRNAs described as breast cancer biomarkers in different publications in
the literature do not overlap with each other [60], and although the exact reasons remain
unclear, methodological differences in experimental procedures may be one major cause [61].

Another group, using a similar approach to ours, identified nine miRNAs that were differ-
entially expressed between healthy controls and DM1 individuals [62]. Of those, seven were
included in our profiling panel, however, none of them were positive. Of note, Perfetti et al.
used plasma samples in their research, whereas we used serum; this is worth mentioning
because differences in miRNA and RNA levels in serum vs. plasma have been reported [28].
The authors suggested that miRNAs are released from blood cells into serum during the

Fig 3. The ratio ofmiR-130a andmiR-21 failed as a myotonic dystrophy type 1 biomarker. (A) The ratio
ofmiR-130a andmiR-21 according to expression levels obtained from the profiling performed with serum
samples from nine DM1 patients and nine healthy controls. (B) The same ratio was calculated after
measuringmiR-130a andmiR-21 expression levels by quantitative PCR on serum samples from 21 DM1 and
17 control individuals. No statistically-significant differences were observed. Graph bars represent the
average ΔCts (miR-130a–miR-21) and their standard errors.

doi:10.1371/journal.pone.0150501.g003
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coagulation process, although they did not identify the reason for this. Therefore, results
regarding the biomarkers identified using serum vs. plasma are not comparable. It is also note-
worthy that we used different measurement platforms to those employed by Perfetti et al.: the
Taqman and Exiqon miRNA qPCR panels, respectively. In this regard, Wang et al. demon-
strated that the consistency between results obtained using both platforms is low [28], finding
that from 358 miRNAs, only*19% were detected by both platforms, and that Taqman mea-
surements were 6.7 Ct-values higher than those from Exiqon [28].

After miRNA profiling we identified only one miRNA that was differentially expressed:
miR-21. We tried to validate five additional miRNAs by qPCR, although the differences
between controls and DM1 were not statistically significant, and we did not observe differential
expression in any case. qPCR data were normalised tomiR-15a because two different algo-
rithms identified it as the most stable miRNA from among all of the samples. In addition,miR-
21 expression was assessed as a ratio tomiR-130a, however, neither of these analyses revealed
significant differences. We used serum samples from males in the profiling, and samples from
both genders during the validation where a higher number of samples was needed. However, it
is unlikely this had any significant effect on our results because the qPCR results for each gen-
der were similar to the results obtained from the combined sample analysis.

In summary, we conclude that, under our reported conditions, the miRNAsmiR-103,miR-
107,miR-21,miR-29a,miR-30c, andmiR-652 are not useful serum biomarkers for DM1.
Although the successful use of miRNAs from body fluids as disease-severity and progression
biomarkers in other studies represents an encouraging advance, several technical aspects must
first be standardised because methodological differences in the experimental procedures seem
to be the main reason that data from different studies do not coincide [61].

Supporting Information
S1 Fig. Representative example of Southern blot used for CTG repeat size determination.
Arrows indicate wild type alleles. Mutant alleles in patients 1,3, 4 and 5 present more than
1000 CTG repeats while in patient 2 the mutant allele has a a repeat size of ~600 repeats.
(TIF)

S1 Table. Cts values for 175 miRNAs in DM1 and controls serum.
(XLS)

S2 Table. Absorbance at 414 nm for sera used in the assay.
(XLS)

S3 Table. Statitical analyses.
(XLS)

S4 Table. Genorm and Normfinder algorithms output for most stable miRNAs in the
study.
(XLS)
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